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RESEARCH MEMORANDUM 

FACTORS AFFECTING LOADS AT HYPERSONIC SPEEDS 

By Arthur Henderson, Jr., and Mitchel H. Bertram 

This paper gives a brief summary of current loads information a t  
hypersonic speeds. Several methods which the designer can employ i n  
estimating the  loads on various a i rc raf t  components are  discussed. The 
paper deals with the  character is t ics  of both slender and b l u n t  configura- 
t ions and touches upon the e f fec ts  of boundary-layer and aerodynamic 
interference. 

INTRODU(;TION 

The calculation of loads a t  hypersonic speeds requires the use of 
techniques with which many designers are not very familiar.  The methods 
based on l inear  or  second-order theory, which were widely used at  super- 
sonic speeds, are  inadequate fo r  slender configurations a t  hypersonic 
speeds and, of course, are completely inapplicable t o  configurations 
with blunt noses or leading edges. 

In t h i s  paper it is shown that certain simplifying features which 
allow good design approximations of loads t o  be made with a minimum of 
e f fo r t  ex i s t  a t  hypersonic speeds. 
problems associated with hypersonic phenomena are  pointed out. 

I n  addition, some of the  unsolved 
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Subscripts : 

m free-stream conditions 

B( w) 
MAX maximum 

S shoulder 

t based on thickness 

d based on diameter 

body i n  presence of w i n g  

DISCUSSION 

There a re  several  methods which the designer can employ i n  arr iving 
a t  an estimate of the loads on the various a i r c r a f t  components. Before 
discussing them, however, it is instructive t o  consider, quali tatively,  
how hypersonic phenomena d i f f e r  from supersonic. 

Although hypersonic flow introduces many problems which were not 
encountered a t  supersonic speeds, it also introduces cer ta in  simplifying 
features; and aerodynamicists have not been long i n  taking advantage of 
them. For example, one source of simplification a t  hypersonic speeds i s  
the f ac t  tha t ,  i n  the exact shock equations, the Mach number term i s  
usually squared and often appears i n  the denominator. Thus, as the Mach 
number increases, these terms become insignificant;  thus re la t ive ly  
simple expressions often y ie ld  accurate approximations fo r  cer ta in  flow 
properties a t  hypersonic speeds. 

Slender Configurations 

Characterist ics of hypersonic flow.- Some simplifying features of 
hypersonic flow are  i l l u s t r a t ed  i n  figures 1 and 2. One of the character- 
i s t i c s  of hypersonic flow i s  i t s  tendency toward two-dimensionality when 
i n  contact with slender bodies o r  surfaces. (See f ig .  1.) The upper 
half of f igure 1 depicts a sharp-leading-edge sweptback wing i n  a low 
and in a high Mach number flow f ie ld .  There are  two streamlines the same 
distance E apart. A s  shown by the dashed l i nes ,  the f i e lds  of influence 
from each disturbance point along the leading edge spread across the w i n g  
in  supersonic flow, whereas they are  confined t o  a re la t ive ly  narrow 
region i n  hypersonic flow. In addition, the r igh t  streamline of each 
pair  w i l l  s t r i ke  the leading edge l a t e r  than the l e f t  one, -the time lag 

being AT = E tan *. Obviously, as the  Mach number increases, the time 
M a  
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l ag  decreases; thus at high Mach numbers the  r igh t  streamline s t r i k e s  
t h e  leading edge a t  almost t he  same time as the  l e f t  one. 
as fa r  as the  f l u i d  i t s e l f  i s  concerned, it fee l s  as though it i s  pract i -  
ca l ly  two dimensional. 

Consequently, 

The bottom half of f igure 1 depicts the fundamental basis of the  
generalized shock-expansion method as applied t o  slender three-dimensional 
bodies. As Eggers and Savin ( r e f .  1) have shown, so  long as the  diver- 
gence of streamlines along the  body i s  negligible,  t he  flow on the  body 
surface and the associated flow f i e l d  w i l l  be essent ia l ly  two-dimensional 
i n  nature; consequently, two-dimensional shock-expansion theory can be 
used t o  analyze the flow about slender bodies of revolution. 

Hypersonic s imi la r i ty  l a w . -  The designer has another powerful t o o l  
a t  his disposal i n  the form of the  hypersonic s imi la r i ty  l a w  (see,  f o r  
example, r e f s  
points on s imilar ly  shaped bodies are  ident ica l  i f ,  for  the  two bodies, 
the  product of free-stream Mach number and thickness r a t i o  i s  a constant. 

2 t o  k ) ,  which s t a t e s  t h a t  the  pressures a t  corresponding 

The physical concept behind the  hypersonic s imi la r i ty  l a w  i s  i l l u s -  
t ra ted  qua l i ta t ive ly  i n  f igure 2. Two marbles are  shown, each ro l l i ng  
toward i t s  o m  wedge. The upper marble w i l l  r i s e  a height h i n  the 
length 2 1  with the velocity V1, while the  lower marble w i l l  r i s e  the  
same height h i n  the  longer length 22 = A 2 1  but with the  higher veloc- 
i t y  V 2  = AV1. The r a t i o  of lengths and veloci t ies  i s  such t h a t  both 
marbles r i s e  the  same height h i n  the  same length of time; t h a t  is ,  
they both experience the same change of velocity and, consequently, each 
marble w i l l  impart the same amount of momentum t o  i t s  par t icu lar  wedge. 
I f  the marbles are  thought of as air  molecules and the wedges as cor- 
responding slopes on two similar bodies, a d i r ec t  analogy with the  hyper- 
sonic s imi la r i ty  law i s  immediately apparent. 

The approximate region in which the  hypersonic s imi la r i ty  l a w  i s  
applicable has been determined by Lees ( r e f .  5 )  t o  be about as shown i n  
figure 3 fo r  cones. This region i s  determined by the condition t h a t  the 
cone shock angle 1 3 ~  i s  l e s s  than 24'. Thus, the  maximum cone angle 
f o r  good correlation at hypersonic speeds w i l l  be about 20°. 
revolution such as ogives are essent ia l ly  conical a t  the  nose and decrease 
i n  s l o p e s  thereaf ter .  Therefore, i f  the  nose of any pointed body i s  
about 20' or l ess ,  it should correlate  well with t h i s  l a w .  
t h i s  means the fineness r a t i o  should be about 3 or more. 

Bodies of 

For ogives, 

Figure 4 presents the  pressure-ratio d is t r ibu t ion  on ogives. 
so l id  l ines  are the character is t ic  solutions of Rossow ( r e f .  4), each of 
which is for  at l e a s t  t w o  d i f fe ren t  combinations of Moo and Z/d 
within the  range shown at  the lower r igh t .  Although I&, = 1 2  w a s  the  

The 
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highest value of I&, used i n  the calculations, it should be pointed out 
t h a t  t h i s  value is  not meant t o  be taken as an upper l i m i t .  
a re  the tangent-cone approximations of Probstein and Bray ( r e f .  6) .  For 
K 2 1, they applied the tangent-cD8e approximation t o  Lees' r e su l t  which 
i s  f o r  the case when the  shock l i e s  f a i r ly  close t o  the body; and for  
K < 1, t h a t  is, when the shock i s  well removed from the surface of the 
slender bodies, the tangent-cone approximation i s  applied t o  K&mAn's 
r e su l t  i n  l inear ized supersonic flow. 

Also shown 

Van Dyke has pointed out i n  h i s  work on the hypersonic small- 
disturbance theory (refs .  7 and 8) tha t  the range of appl icabi l i ty  of 
the hypersonic s imilar i ty  law can be extended t o  the transonic range by 
replacing the Mach number term with the Prandtl-Glauert s imi la r i ty  fac- 

t o r  r2-y. M, 
i l l u s t r a t e d  i n  figure 5 for  cones with semiapex angles of 5O, loo, 15O, 
and 20'. I n  t h i s  f igure C tan2 u is  plotted against f r l  tan u 
fo r  a Mach number range from 1.15 t o  hypersonic speeds. 
ended when sonic velocity appears on the cone surfaces. 
is  seen t o  be excellent. 

The degree t o  which t h i s  correlation i s  successful i s  

P I  
Each curve is  
The correlation 

The correlation for  bluff cones as suggested by Newtonian theory 
is presented i n  figure 6, where C sin2 (T i s  plot ted against 6. For 

the ranges of Mach number and u shown, a good approximation t o  the 

pressure on the surface of a bluff cone i s  

P I  

cp = 2.2. 
sin2 u 

Shock-expansion theory.- The use of two-dimensional shock-expansion 
theory t o  predict  the pressures on slender bodies of revolution a t  zero 
angle of attack a t  hypersonic speeds is w e l l  known. Eggers and h is  
associates ( r e f s .  1 and 9) have shown that,  provided conditions at  the 
nose are  known from e i ther  conical theory or experiment, the generalized 
shock-expansion method can be used for  slender bodies of revolution a t  
angle of attack. 

Figure 7 shows a comparison of t h e  shock-expansion theory w-ith experi- 
ment f o r  an ogival nose a t  an angle of attack of l 5 O  and a free-stream 
Mach number of 5.05. The symbols show the experimental pressure coef- 
f i c i en t s  along the top, side, and bottom meridians. The theo re t i ca lp re -  
dictions begin with the assumption of conical f l o w  a t  the nose. The so l id  
curves use the theoret ical  cone approximation of Savin ( r e f .  10) as the 
s t a r t i ng  point f o r  the shock-expansion calculations, and the  dashed curve 
uses experimentally determined conditions on the nose cone as the s ta r t ing  
point for  the  calculations. Obviously, a re l iab le  theore t ica l  method i s  
preferable f o r  design work. It i s  seen that on the bottom meridian, which 
would be of most in te res t  for  loads considerations, the shock-expansion 
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calculations agree with experiment for  both the  theore t ica l ly  and the  
experimentally determined starting .conditions; t ha t  is ,  Savin's theore t ica l  
cone r e su l t s  combined with shock-expansion theory w i l l  give good design 
estimates of maximum loads on sharp noses a t  angle of attack. 

Effect of Blunting 

I n  cases where high heat-transfer r a t e s  are expected, the  use of 
blunt leading edges and noses i s  dictated.  
resu l t s  for both two-dimensional c i rcu lar  cylinders ( r e f L .  11 and 12) 
and hemispherical-nose bodies of revolution ( r e f .  13). 
zirculas cylinders ( f ig .  8) would be applicable both t o  bodies of revolu- 
t i o n  a t  high angles of a t tack and t o  the leading edges of blunt sweptback 
wings. 
It shows the  manner i n  which the pressure r 4 i o  varies with meridian angle, 
and it i s  good f o r  a wide range of sweepback angles. Also note tha t ,  as the 
Mach number increases, t he  band of experimentally determined pressure 
ratios converges toward the theore t ica l  curve of Goodwin ( r e f .  12) shown 
by the dashed l i ne .  Penland ( r e f .  11) has shown tha t  pmax can be deter- 
mined on yawed circular  cylinders for sweepback angles from 0' t o  about 
7 5 O  a t  M, = 6.9 by using the normal component of &. Thus, the  abso- 
l u t e  pressure d is t r ibu t ion  on the  windward side of yawed c i rcu lar  cylinders 
can be obtained. 

Figures 8 and 9 present 

The r e s u l t s  f o r  

Figure 8 i s  essent ia l ly  a double correlat ion of pressure ra t ios .  

The r e su l t s  fo r  hemispherical noses i n  f igure 9 show excellent agree- 
I n  t h i s  f igure the pressure-coefficient r a t i o  

s/r, which i s  the  a rc  angle i n  radians. 
ment with Newtonian theory. 
i s  plotted against 
seen, the  pressure-coefficient r a t i o  i s  independent of Mach number. 
curve of  C p , w  against & i n  the  upper r igh t  of the  f igure shows 
tha t ,  fo r  values of I&, greater than about 4, C P , w  i s  essent ia l ly  

a constant on the order of 1.8. Thus, with the  a id  of Newtonian theory, 
Cp can  be closely estimated, and fo r  values of & above about 4, t he  
Cp dis t r ibut ion w i l l  be essent ia l ly  invariant with &. 

As can be 
The 

A s  was mentioned previously, many of t he  exact flow parameters can 
be closely approximated with simple expressions i n  the  hypersonic-flow 
r e g h e .  For example, fo r  7 = 1.4 and I&, >> 1, it can be shown t h a t  
t h e  r a t io  of free-stream s t a t i c  pressure t o  stagnation pressure on a 
blunt-nose body i s  approximately 0.7771&2. (This r a t i o  i s  determined 
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in the  appendix.) 
incurred by using the  approximation is shown by the sketch. 

The percentage e r ror  in  the t rue  value of p m / w  
A t  M, = 3, 

t he  e r ro r  i s  only 4 percent and it 
decreases rapidly thereaf ter  with 
increasing I&. It can also be 
shown that f o r  Moo >> 1, the r a t i o  8r I 

% ERROR IN 

PMAX 

of l o c a l  pressure t o  maximum pres- 
sure is  approximately equal t o  the  
r a t i o  of l o c a l  pressure coefficient 
t o  maximum pressure coefficient.  
Consequently, the r a t i o  of the  loca l  
absolute pressure t o  the free-stream 0 2 4 6 8 1 0  
s t a t i c  pressure is given by Mrn - 

cp ; that is, at hyper- P Mm2 
P, 0.777 cp,Mpx 
- % -  

sonic speeds, the  absolute pressure a t  any point on a blunt nose is 
d i r ec t ly  proportional t o  the square of the Mach number. 
f o r  any given al t i tude,  the  absolute pressure d is t r ibu t ion  on a hemi- 

In particulaz,  

p M 2  spherical  nose is given by - = - cos*(s/r) f o r  0 5 s/r 6 1.3 radians. 
pm 0.777 

The f a c t  t h a t  the experimental pressures deviate from the theoretdcal 
pressures beyond about 1.3  radians is  due t o  a combination of entropy, 
vor t ic i ty ,  and boundary-layer effects ,  which, of course, Newtonian the- 
ory does not include. For the Mach numbers considered i n  figure 9, the  
e f f ec t s  are negligible as far as loads are concerned. As the Mach num- 
ber i s  increased, however, these e f f ec t s  become increasingly important. 

Figure 10 shows how, as a r e su l t  of entropy gain, the surface pres- 
sure at the shoulder varies with Mach number. The model in f igure 10 is 
a two-dimensional f l a t  slab with a sonic-wedge leading edge. 
sures were calculated by simple inviscid shock-expansion theory. It can 
be seen tha t ,  as M, increases, the shoulder pressure increases t o  very 
large values. The pressure on the shoulder of blunt-nose bodies and blunt- 
leading-edge wings would follow the  same trend with Mach number. 

The pres- 

Figure 11 presents theoret ical ly  and experimentally (ref. 14) 
determined pressure dis t r ibut ions on a blunt-leading-edge f la t  p l a t e  
fo r  a free-stream Mach number of about 7. 
mined pressure dis t r ibut ions were approximated by assuming sonic-wedge 
leading-edge conditions. Also indicated in  the f igure i s  the value of 
the  pressure r a t i o  f o r  no entropy gain and zero vor t ic i ty .  
t i o n  that free-stream s t a t i c  pressure exis ts  on the f la t  p l a t e  w a s  accept- 
able at lower supersonic speeds. A t  hypersonic speeds, however, the 
large entropy gain through the  normal shock and the large entropy and 

The theore t ica l ly  deter-  

The assump- 
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vort ic i ty  gradients induced i n  the  flow f i e l d  by the high shock curva- 
ture  r e s u l t  i n  the type of pressure dis t r ibut ion shown by the so l id  
curve. This curve was calculated for  the inviscid flow a t  a Mach num- 
ber of about 7 for  the sonic-wedge leading-edge configuration shown a t  
the upper l e f t .  The dashed curve i s  the experimental pressure d i s t r i -  
bution fo r  the blunt-leading-edge p l a t e  shown on the r igh t  a t  one value 
of Reynolds number. The difference between these two curves i s  due t o  
the presence of the boundary layer.  
lower, the boundary layer would have been thicker and the separation of 
these two curves would have been greater;  the converse being t rue  if the 
Reynolds number had been higher. It should a l so  be pointed out that ,  as 
the Mach number increases, not only does the leve l  of p/p, 
der increase but a lso the r a t e  of decrease becomes less, so that the  
entropy and vor t ic i ty  e f fec ts  are spread over a greater distance at 
higher Mach numbers. 

If the Reynolds number had been 

at the shoul- 

I 

Effect of Boundary-Layer Separation 

When r e a l  f l u i d  effects ,  including boundary layers, a re  brought 
into the  picture,  the consequences of boundary-layer separation must a l so  
be considered. 
important, although it can sometimes be neglected. 

A t  hypersonic speeds boundary-layer sepasation is  often 

Figures 12 and 13 i l l u s t r a t e  examples of boundary-layer separation 
which m u s t  be considered and boundary-layer separation which may be neg- 
lected. Both the body with conical f l a r e  ("flared skir t")  shown i n  f ig-  
ure 12 and the body with flapped w i n g  shown i n  figure 13 were tes ted  a t  
M, x 7. (See r e f s .  13 and 16, respectively.) 
s epaa t ion  point moves rearward along the  f lared-skir t  body with increasing 
Reynolds number i s  indicated by the so l id  l i n e  in f igure 12. 
pressure-coefficient dis t r ibut ions fo r  two extreme positions are  shown 
above with corresponding symbols. 
design for  separated or  unsepakated flows i s  obvious. For unseparated 
flow the s k i r t  pressure i s  about what would be expected i n  the absence 
of viscosity, while the l a m i n a r  separation region essent ia l ly  protects 
the s k i r t  from di rec t  contact with the f ree  stream. 

The manner i n  which the 

The body- 

The importance of knowing whether t o  

On the other hand, a large portion of the upper surface of the wing 
w i t h  trailing-edge f lap  ( f ig .  13)  i s  i n  a separated-flow region and there  
i s  essent ia l ly  no effect  on the  upper surface pressure coefficient.  Fig- 
ure 13 shows the f l ap  deflected 160; however, the same e f f ec t s  would be 
true w i t h  a negative f l ap  deflection. 
of wings a t  angle of attack i n  hypersonic flow are essent ia l ly  negligible 
whether separation ex is t s  or not; the difference between free-stream pres- 
sure and vacuum i s  s o  s m a l l  i n  comparison with the pressures on the lower 
surface tha t ,  fo r  a l l  prac t ica l  purposes, the upper surface can be neg- 
lected in  loads calculations. 

The loads on the upper surfaces 
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The separated flow on the lower surface is  confined t o  a r e l a t ive ly  
s m a l l  region. 
surface loads would be affected more than shown in figure 13. 
tude of t he  loads induced would aPso.depmgpp the condition of the bound- 
ary layer, t ha t  is, whether it is 1am'ina;r or turbulent. 

I f  t h i s  separation point were t o  move forward the  lower 
The magni- 

There is  as yet not enough knowledge about separation at  hypersmic 
speeds t o  be able t o  predict  when or where separation w i l l  occur f o r  
e i ther  laminar or  turbulent flow. 

Aerodynamic Interference 

Another f i e l d  which i s  r e l a t ive ly  unexplored a t  hypersonic speeds 
i s  tha t  of aerodynamic interference and the  ro le  that interference plays 
i n  a l te r ing  the expected loads on any component. 

One phase of t he  interference problem w a s  investigated by building 
a scale model of a configuration which had previously been tes ted  at 
I&, = 3.36. (See refs. 17 and 18.) This model w a s  t es ted  at  & = 6.85 
i n  the Langley 11-inch hypersonic tunnel. Some preliminary r e su l t s  a re  
presented herein. 

Figures 14 and 15 present t he  span-load dist r ibut ions on the  wing 
alone and on the  w i n g  i n  the  presence of the body at an angle of a t tack 
of 15' for  M, = 3.36 and = 6.85, respectively. The overal l  trends 
of the  r e su l t s  a t  = 3.36 are about what would be expected. The 
r e su l t s  a t  M, = 6.85 show the large localized e f fec t  which the  thick 
boundary layer plays i n  interference between adjacent components. The 
indicated posit ion of the boundary layer was  taken from schlieren pictures  
a t  a = Oo on the sharp-nose body. The thickness and condition of the  
boundary layer at the  wing-body juncture at  a = 15' i s  not known. Note 
a l so  the e f fec t  of nose shape on the loadings. The blunt nose decreased 
the  wing loadings. Although the decrement w a s  not appreciable a t  t h i s  
Mach number, it is t o  be expected tha t  the greater losses incurred by a 
detached shock a t  higher Mach numbers w i l l  more seriously a f fec t  the 
loadings not only on the wing but a lso on a l l  components within the region 
of influence of the highly ro ta t iona l  p a r t  of the flow f i e l d  associated 
with blunt noses. 

The shock-expansion theory predicts the loading on the wing alone 
a t  M,,, = 6.85 f a i r l y  well. The results of the M,,, = 3.36 tests a re  
not a f a i r  t e s t  of the  adequacy of shock-expansion theory since at  
a = 13O the leading-edge shock is  detached at  Moo = 3.36. 

Figure 16 presents the interference loading on the body due t o  the 
presence of the  wing at  an angle of attack of 15O for  I&, = 3.36 on the  
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sharp-nose body and L = 6.85 
The orientation of the wing and body with respect t o  the load-distribution 
curve is  as indicated. 

on the sharp- and blunt-nose bodies. 

Mach number apparently does not play an important ro le  i n  inter-  
ference e f fec ts  i n  t h i s  Mach number range, as evidenced by the f a c t  t ha t  
the general trends of the interference loading curves on the sharp-nose 
body a t  M, = 3.36 and I&, = 6.85 do not d i f f e r  widely. The e f fec t  of 
nose shape on body interference loadings i s  evidenced by the r e l a t ive  
displacement of the curves with the square and diamond symbols, and, as 
already mentioned, the significance of t h i s  type of interference w i l l  
probably increase with increasing &. 
t h a t  the maximum interference loading fo r  each of the three curves w a s  
50 t o  60 percent of the corresponding body-alone loading. 

Also of i n t e re s t  i s  the f ac t  

CONCLUDING RFMARKS 

This paper has summarized br ie f ly  current loads information a t  
hypersonic speeds. 
estimating the  loads on various a i r c r a f t  components have been discussed. 
The paper has considered the character is t ics  of both slender and b l u n t  
configurations and the e f fec ts  of boundary-layer and aerodynamic in te r -  
ference. Many problems s t i l l  confront the designer - the  e f fec t  on t a i l  
loads of  the w i n g  flow f i e l d  and i t s  associated high-energy wake and the  
effect  of the body flow f i e l d  and i t s  highly ro ta t iona l  flow for  b lunt -  
nose bodies. I n  addition, the e f fec t  on loads a t  hypersonic speeds of 
the inert  degrees of freedom of the components of the a i r  (molecular 
vibration, dissociation, and ionization) i s  essent ia l ly  unknown. 

Several methods which the  designer can employ i n  

Langley Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field,  V a . ,  March 5 ,  1957. 
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APPENDIX 

PRESSURE RELATION APPROXIMATIONS 

The ratio of free-stream static pressure to stagnation pressure for 
a blunt-nose body can be calculated approximately from the following exact 

1 0  relation (see ref. 19, eq. (100)) : - *  r -.- 0 . .  ,. 

Since - Y -  - - + 1, equation (1) c a n  be mitten: 
7 - 1  7 - 1  

As M, becomes large, equation (2) is closely approximated by 

For 7 = 1.4, equation (3) becomes 



0 .  0 . 0  0 0 0 0  0 0 0  0 .  0 0 0 0 0 0  0 .  
0 .  0 .  0 .  0 0 0 0  0 0 0  0 . .  
0 0  0 . 0  0 0 0  0 0 0 .  
0 .  0 .  0 . .  

0 .  0 0 

12 0 0  0 0 0  0 0 0 0 .  &+$-Jy&!&: 0.:  ' 0 :  

In addition, since 

the ratio of local surface pressure coefficient to m a x l  
pressure coefficient becomes 

P P, - - -  
cP - p-p, - PMAX PMAX - 

p, P, 1-- cP, MAX P W  - 
p m  

Rearranging the terms of equation (5) yields 

P= 
PMAX C 

which, with the aid of equation (4), yields f o r  large 

P CP 
PMAX cp,MAx 
- x  

> - _____ ~ 

and 
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TENDENCY TOWARD TWO-DIMENSIONALITY OF FLOW 
AT HYPERSONIC SPEEDS 
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Figure 1 

PHYSICAL CONCEPT FOR HYPERSONIC SIMILARITY LAW 
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Figure 2 
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RANGE OF APPLICABILITY OF HYPERSONIC SIMILARITY 
LAW (K=M& FOR CONES 

a =oo 
24 r M?= 

HYPERSONIC SIMILARITY LAW 
I6 APPLICABLE IN THIS REGION 

- 
CONE FOR UNYAWED CONES 

SEMIAPEX I2 - 
ANGLE, Q 

8 -  

4- 

I I I I 1 
0 2 4 6 8 IO I2 14 16 18 

M a  

Figure 3 

APPLICABILITY OF HYPERSONIC SIMILARITY LAW 
TO SLENDER BODIES 
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CORRELATION OF THEORETICAL PRESSURE COEFFICIENTS 
ON SLENDER UNYAWED CONES 

COMBINED SUPERSONIC- HYPERSONIC SIMILARITY RULE 

Figure 5 

CORRELATION OF THEORETICAL PRESSURE COEFFICIENTS 
ON BLUFF UNYAWED CONES 
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PREDICTION OF PRESSURE DISTRIBUTION ON OGIVE AT 
ANGLE OF ATTACK 

GENERALIZED SHOCK-EXPANSION METHOD; M a  = 5.05 
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Figure 7 

INVARIANCE OF CYLINDER PRESSURE RATIO WITH 
MACH NUMBER AND SWEEP ANGLE 
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INVARIANCE OF PRESSURE -COEFFI€tENT RATIO WITH 
MACH NUMBER FOR HEMISPHERICAL NOSES 
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Figure 9 

EFFECT OF ENTROPY ON SHOULDER PRESSURE OF 
SONIC- WEDGE FLAT PLATE 
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Figure 10 
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ENTROPY GAIN AND ZERO VORTICITY 
I ’  

EFFECT OF BOUNDARY LAYER AND ENTROPY ON 
FLAT- PLATE PRESSURES 
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Figure 11 

EFFECT OF SEPARATION ON PRESSURE DISTRIBUTION 
ON BODY OF REVOLUTION 
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Figure 12 
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Figure 13 

INTERFERENCE ON WING LOAD DISTRIBUTION AT Q = 15" 
M a  = 3.36 

SHOCK-EXPANSION THEORY 
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INTERFERENCE ON WING LOAD DISTRIBUTION AT Q = 1 5 O  
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Figure 15 

INTERFERENCE ON BODY LOAD DISTRIBUTION DUE TO WING 
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